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Abstract :  Classification performance analysis was done on selected narrowband near-infrared spectrum to identify urban road 

materials. There were five urban road materials to be identified; aggregate, asphalt, carbon organic, clay and concrete. The 

imaging indexes were selected that proposed a set of narrowband 760nm, 800nm, 850nm, 900nm, 950nm, 980nm with 720nm 

wide-band spectrum as normalization spectrum. Multilayer perceptron classification method was used. The result was presented 

where a significant classification performance shown on those five urban road materials with 76.6032 % using 10 fold cross 

validation on data data samples. A separate test data samples used for further predictions and visualization. 
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1.INTRODUCTION 

 

The potential of urban road materials identification using near infrared vision system using the spectrum capability of common 

camera and optical filters had been proposed [1]. This research looked at common instrumentation with spectrum ranges from 350 

nm to 1000nm that common to CCD and CMOS devices [2]. Upon further research, near infrared imaging indexes have difficulties 

to identify materials with content similarity like aggregate (sand, rock and gravel), clay and concrete have something in common, 

one of the material make-up is silicate based material. 

 

Computer vision using multispectral imaging indexes 

The novelty of this approach was the use of  narrowband near infrared (NIR) multi-spectral to determine the imaging indexes and 

the additional UV/NIR classifiers. A red edge channel for improving land-use classification based on high resolution mufti-spectral 

satellite data was studied [3] which the interest was on 720nm onward of Near Infrared. The red edge is the discontinuation or 

transition  between colour/from visible spectrum to infrared spectrum to infrared spectrum started at 720nm, a transitional spectrum 

ranges from visible to not visible to human eyes. As most of the remote sensing uses wideband spectrum channel, this study 

explored a set of narrowband imaging indexes for object identification.  

The University of California at Santa Barbara [4] has analyzed Urban Area Covers with range of 350nm to 2500nm to record hyper 

spectral data of various urban material as shown the classification.  

US Sandia National laboratory had a study on the usage of multispectral imaging indexes for autonomous ground vehicle 

navigation in 2003 as the early study of this subjects [5].  

 

Multispectral infrared for urban materials analysis. 

Infrared spectral analysis using spectroscopy and spectrometer looks at the distinctive shape and depth of spectral signature to 

analyse certain objects. The mixture of the material apply as well, such as for concrete. The process of concrete mixed cement, 

water, sand and other aggregate. This gave a variability of infrared spectral signature of the mixture [6]. Another approach used 

thermal infrared imaging (4500nm and above) to analyzing urban street surrounding material[7]. 

A visible ranges (400nm to 700nm) and near infrared (NIR) of 8 sensors were used to analyze the urban materials remote sensing 

using discriminant analysis. A feasibility study of 8 VIS-NIR sensors to discriminate urban materials [8].  

 The proposed approach used Near Infrared only as this has limited and minimal color variation and able to be done using relatively 

cheap camera and optical filters [9]. 

 

Initial development object detection sensor on  road materials sensing using narrowband imaging indexes using SWIR 

(Short Wave Infra Red). 

Narrowband Infrared object detection sensors had been proposed by Kosugi Laboratory at Tokyo Institute of technology [9]. The 

laboratory proposed using five normalized narrowband SWIR indexes for the experiments with five bands  of 1100, 1200, 1300, 

1500 and 1600 nm respectively, all in the SWIR region. The initial result was satisfactory to classify human skin, vegetation, 

animal/cloth, in which relatively high reflectance values were observed. While for inorganic matter such as car/ metal, concrete and 

asphalt were rather flat over the wavelength range spectrum profiles. 

While adopting the same approach for different set of objects, the proposed approach differs from the usage of NIR instead of 

SWIR. 

 

 

Urban road materials in near infra red (NIR) spectrum considerations  

Aggregates are the main material make-up of concrete and road asphalt. It has a spectral signature at longer infrared waves, a 

thermal infrared region, at around 9000nm wavelength [10]. Aggregate and concrete differs on the presence of CaCO3 (Calcium 

Carbonate) based on research on the present of soil properties on spectrum reflectance from UV up to SWIR (Short wave infrared) 

[11]. The study shows how the different composition of  CaCo3 effect on the spectrum patterns. Road asphalt did not have a 

signature spectrum characteristic in the range of 700nm - 1000nm, however, it had distinctly different spectrum plateau with 
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vegetation [12]. In the spectrum range of 700nm - 1000nm shown a comparison that it is distinctly different between road asphalt 

and concrete [13]. Another study looked at the various degree of asphalt removal on the asphalt road [14]. This happened during the 

asphalt road aging and deterioration. A study proposed an Exposed Aggregate Index of the asphalt-road [15] for that purpose. 

Natural fibers from plants can be in the forms of shoots, roots and decomposition of plant material. In the spectrum infrared 

reflectance range of 700nm - 1000nm, the present of this organic carbon effects on the overall of soil spectrum characteristics [16].

  

Clay presents in soil along with aggregates and another mineral. Estimation of the present of clay and CaCO3 suggested in the 

spectrum range of 2100nm to 2400nm [17], therefore it is more effective in SWIR region. However, another study of clay contains 

shows that there were minor variant spectral identified in the range of 700 - 1000nm [18]. The study focused on kaolinite clay 

where this is the abundance form found in soils in tropical area.  

Concrete, as one of the component of urban road material, is a mix of several other materials. Concrete’s near infrared pattern is 

influenced highly by aggregates and minor influence of the existence of limestone. Limestone (CaCO3) has spectral variations at 

1410nm, 870nm and 710nm [19]. The interested spectrum for this research was 870nm and 710nm. 

 

2. RESEARCH METHOD 

 

This was an initial attempt to visualize five urban road materials that common in the road environment using multi spectral 

narrowband near infrared computer vision. There are five urban road material categories used, those were asphalt-based silicate-

based (code: Aggregate), Asphalt (code: Asphalt), Natural Dry Fiber (code: Carbon Organic), Clay (code: Clay) and cement-based 

materials (code: Concrete) as the urban road material experimentation objects. The experimentation approach is as in figure 1. 

 
The detail steps were as follows: 

 

Step 1: Material Preparation.  

The object for the classification training data for MLP development are seen in figure 2 below. There were 50 dry samples of five 

urban road materials categories with each sample where divided into 5x5 pixels area with total 8100 image blocks. That generated 

405000 data-sets. 

The sample categories used common objects on urban road materials with: 1.Aggregate samples; dry black sands, dry rocks and dry 

rock tiles, 2.Asphalt samples ; low quality bitumen coating, high quality bitumen coating and road asphalts, 3.Carbon Organic 

samples ; dry banana leaf, dry mango leaf and dry woods, 4.Clay samples ; building clay block, roof clay and clay tiles, 5.Concrete 

samples; lighter colored cements, darker colored cements and white buidling concrete blocks. 
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Figure 2 : From top to bottom. 10 variations of cement-based materials (Concrete), 10 sample variations of clay-based materials 

(Clay), 10 sample variations of silicate-based materials (Aggregate), 10 sample variations of natural dry fibers (Carbon Organic) 

and 10 sample variations of bitumen/asphalt-based materials (Asphalt). 

 

Step 2: Images acquisition on reflectance of UV and Near Infrared using multispectral optical camera.  

Multi-spectral optical filtered camera consists of two main parts: camera that capable to read 350 nm to 1000 nm light spectrum and 

optical filter rotating wheel as shown in figure 3(a). The rotating wheel consists (1) Low Pass UV filter (350nm up to 400nm), (2) 

No optical filter, (3) 720nm high pass optical filter (720nm to 1000nm),  (4)  760nm with 10nm band pass optical filter, (5) 800nm 

with 10nm band pass optical filter, (6) 850nm with 10nm band pass optical filter, (7) 900nm with 10nm narrow band pass optical 

filter, (8) 950nm high pass optical filter to 1000nm, and (9) 950nm high pass optical filter to 1000nm. The choice of optical filters 

were different from earlier configuration [1], this was to accommodate the significant moisture left in the materials, even though 

those was dried, as same carbon organic material and concrete fore example as discussed earlier, capable to retain some moisture 

while asphalt based material were not. Those H2O effects on the 900nm to 1000nm ranges spectrum. 

The camera were mounted and tightly bound to rotating wheel of optical filters replacing the common camera filter. Light source 

used a constant halogen lamp of 150 watt (in oppose of using sun light) to reduce the variability of light source light energy 

intensity. The camera was a mirrorless camera without UV/IR blocked filter as most of commercial camera pre-install with UV/IR 

blocking camera. 

                     
(a)                                                                 (b) 

Figure 3 : (a) Multispectral Camera with rotating wheel of optical filters and halogen lamp as standard light source. (b) 

Sample object. 

Step 3: Data images collection: Training and Testing Images.  

The arrangement of the data collection as shown in figure 3(b). There were 8100 data sets extracted from one sample that cropped 

into 450x450 pixels. Therefore it was 405000 data sets which divided into 70% for training and 30% for testing.  

 
Figure 4: One sample image of each category for Aggregate, Asphalt, Carbon Organic, Clay and Concrete and its 

associated histogram analysis. 

 

Step 4: Imaging Indexes calculation for training and testing data images.  

Every spectrum reading was subjected to be normalized by 720nm spectrum from 720 nm high pass optical filter until up to 

1000nm. Where 720nm is the transition point between visible to infrared spectrum as explained in the previous section. The choice 

of 720nm were to make the rest of spectrum normalized with the same spectrum ranges. The result was expected between -1 to 1. 

The formula were as follows:  
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Step 5: Develop Multi Layer Perceptron  model using training data images.  

Multilayer perceptron were used as the model. The configuration was 500 iterations, learning rate 0.3 and momentum 0.2 with 10 

fold cross validation. Those are common configuration that handle most of classification needs. The steps were to (1) extract the 

images into WEKA tabulation and (2) back to image from WEKA prediction into images. On the 405000 data sets, 70% was used 

as MLP modeland 30% for testing.  
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Step 6: Using MLP Model on testing data images. 

The testing images data were cropped at 450 pixels by 450 pixels, and further calculated 5x5 pixels average. This was to reduce the 

computational resources needed. There were testing 15 samples (30% of all objects) as described earlier. The data sets for each 

object were 8100 (90 pixels by 90 pixels). 

 

Step 7: Visualization of 5 classifiers.  

All 15 (30%) samples were visualized to give the idea of the performance of the proposed classification methods, not only based on 

the confusion matrix as well. 

 

3. RESULT AND ANALYSIS 

This section consists of three main parts: data analysis using box-plots, near infrared predictors and results.  

There were two ways to show the performance of the classification: (1) Confusion matrices, as the performance classification of the 

MLP model, (2) visualization on different sets of data using the MLP model to illustrate the results. 

3.1.Box-plot data analysis 

The calculation of imaging indexes, formula 2 to 8, were visualized using box-plot as shown in figure 5. 

             
(a)                                                 (b) 

                
(c)                                               (d) 

 

 
(e) 

Figure 5. Box-plots of all imaging indexes, 760nm, 800nm, 850nm, 900nm, 950nm, 980nmfor all material categories.(a) 

Aggregate, (b) Asphalt, (c) Carbon Organic, (d) Clay and (e) Concrete 

 

Those box-plots shows the potential of the proposed method and system for classification of five urban road materials. The notable 

different was asphalt around 0.4 while the rest were hovering around 0.5 to 0.7. Another notable different were the indexes of 

900nm, 950nm and 980nm where H20 effects located. 

 

3.2. Near infrared classifiers Model on Training Data 

The data were split for training and test data into 70%-30%, with following results for five urban road materials classification in 

table 3 forMLP model. 

 

 

 

 

 

Table 3: Confusion matrices for near infrared 
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3.3. Near infrared prediction on Testing Data 

Those 15 testing (30% of 50 objects) data images as described in the previous section were subjected to the MLP model trained 

earlier with the prediction confusion matrix the visualization as in table 4 on the testing data. 
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Table 4: (a) Confusion matrix and (b) visualization table for near infrared predictors 

 

 
(a) 

 

 
(b) 

Both confusion matrices and visualization of separate testing data shows the relative performance of prediction on those five 

material categories.  

 

4.CONCLUSION 

This initial NIR imaging indexes shown the potential in predict the dry material categories of aggregate, asphalt, carbon organic, 

clay and concrete from the common objects found in urban road materials such as dry black sands, dry rocks and dry rock tiles; low 

quality bitumen coating, high quality bitumen coating and road asphalts; dry banana leaf, dry mango leaf and dry woods; building 

clay brick, roof clay and clay tiles; whiter cement, grey cements and white building concrete brick.   
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